a亚洲精品_精品国产91乱码一区二区三区_亚洲精品在线免费观看视频_欧美日韩亚洲国产综合_久久久久久久久久久成人_在线区

首頁(yè) > 數(shù)據(jù)庫(kù) > 文庫(kù) > 正文

聚簇索引與非聚簇索引

2024-09-07 22:12:20
字體:
供稿:網(wǎng)友

不論是 聚集索引,還是非聚集索引,都是用B+樹來實(shí)現(xiàn)的。我們?cè)诹私膺@兩種索引之前,需要先了解B+樹。

BTree,B-Tree,B+Tree,B*Tree都是什么

B+ 樹的結(jié)構(gòu)圖:

B+樹的結(jié)構(gòu)圖

B+ 樹的特點(diǎn):

(1)所有關(guān)鍵字都出現(xiàn)在葉子結(jié)點(diǎn)的鏈表中(稠密索引),且鏈表中的關(guān)鍵字恰好是有序的;

(2)不可能在非葉子結(jié)點(diǎn)命中;

(3)非葉子結(jié)點(diǎn)相當(dāng)于是葉子結(jié)點(diǎn)的索引(稀疏索引),葉子結(jié)點(diǎn)相當(dāng)于是存儲(chǔ)(關(guān)鍵字)數(shù)據(jù)的數(shù)據(jù)層;

B+ 樹中增加一個(gè)數(shù)據(jù),或者刪除一個(gè)數(shù)據(jù),需要分多種情況處理,比較復(fù)雜,這里就不詳述這個(gè)內(nèi)容了。

聚集索引(Clustered Index)

聚集索引的葉節(jié)點(diǎn)就是實(shí)際的數(shù)據(jù)頁(yè);在數(shù)據(jù)頁(yè)中數(shù)據(jù)按照索引順序存儲(chǔ);行的物理位置和行在索引中的位置是相同的;每個(gè)表只能有一個(gè)聚集索引;聚集索引的平均大小大約為表大小的5%左右。

下面是兩副簡(jiǎn)單描述聚集索引的示意圖:

在聚集索引中執(zhí)行下面語句的的過程:select * from table where firstName = 'Ota'

聚集索引示意圖

一個(gè)比較抽象點(diǎn)的聚集索引圖示:

align="center"聚集索引圖

非聚集索引 (Unclustered Index)
  非聚集索引的頁(yè),不是數(shù)據(jù),而是指向數(shù)據(jù)頁(yè)的頁(yè)。
  若未指定索引類型,則默認(rèn)為非聚集索引
  葉節(jié)點(diǎn)頁(yè)的次序和表的物理存儲(chǔ)次序不同
  每個(gè)表最多可以有249個(gè)非聚集索引
  在非聚集索引創(chuàng)建之前創(chuàng)建聚集索引(否則會(huì)引發(fā)索引重建)
  在非聚集索引中執(zhí)行下面語句的的過程:  

select * from employee where lname = 'Green'

非聚集索引

一個(gè)比較抽象點(diǎn)的非聚集索引圖示:

非聚集索引示意圖

什么是 Bookmark Lookup
  雖然SQL 2005 中已經(jīng)不在提 Bookmark Lookup 了(換湯不換藥),但是我們的很多搜索都是用的這樣的搜索過程,如下:

  先在非聚集中找,然后再在聚集索引中找。
 

BookMark Lookup

這里舉一個(gè)例子,給我們演示 Bookmark Lookup 比 Table Scan 慢的情況,例子的腳本如下:

  USE CREDIT
  go
  -- These samples use the Credit database. You can download and restore the
  -- credit database from here:
  -- http://www.sqlskills.com/resources/conferences/CreditBackup80.zip
  -- NOTE: This is a SQL Server 2000 backup and MANY examples will work on
  -- SQL Server 2000 in addition to SQL Server 2005.
  -------------------------------------------------------------------------------
  -- (1) Create two tables which are copies of charge:
  -------------------------------------------------------------------------------
  -- Create the HEAP
  SELECT * INTO ChargeHeap FROM Charge
  go
  -- Create the CL Table
  SELECT * INTO ChargeCL FROM Charge
  go
  CREATE CLUSTERED INDEX ChargeCL_CLInd ON ChargeCL (member_no, charge_no)
  go
  -------------------------------------------------------------------------------
  -- (2) Add the same non-clustered indexes to BOTH of these tables:
  -------------------------------------------------------------------------------
  -- Create the NC index on the HEAP
  CREATE INDEX ChargeHeap_NCInd ON ChargeHeap (Charge_no)
  go
  -- Create the NC index on the CL Table
  CREATE INDEX ChargeCL_NCInd ON ChargeCL (Charge_no)
  go
  -------------------------------------------------------------------------------
  -- (3) Begin to query these tables and see what kind of access and I/O returns
  -------------------------------------------------------------------------------
  -- Get ready for a bit of analysis:
  SET STATISTICS IO ON
  -- Turn Graphical Showplan ON (Ctrl+K)
  -- First, a point query (also, see how a bookmark lookup looks in 2005)
  SELECT * FROM ChargeHeap WHERE Charge_no = 12345
  go
  SELECT * FROM ChargeCL WHERE Charge_no = 12345
  go
  -- What if our query is less selective?
  -- 1000 is .0625% of our data... (1,600,000 million rows)
  SELECT * FROM ChargeHeap WHERE Charge_no < 1000
  go
  SELECT * FROM ChargeCL WHERE Charge_no < 1000
  go
  -- What if our query is less selective?
  -- 16000 is 1% of our data... (1,600,000 million rows)
  SELECT * FROM ChargeHeap WHERE Charge_no < 16000
  go
  SELECT * FROM ChargeCL WHERE Charge_no < 16000
  go
  -------------------------------------------------------------------------------
  -- (4) What's the EXACT percentage where the bookmark lookup isn't worth it?
  -------------------------------------------------------------------------------
  -- What happens here: Table Scan or Bookmark lookup?
  SELECT * FROM ChargeHeap WHERE Charge_no < 4000
  go
  SELECT * FROM ChargeCL WHERE Charge_no < 4000
  go
  -- What happens here: Table Scan or Bookmark lookup?
  SELECT * FROM ChargeHeap WHERE Charge_no < 3000
  go
  SELECT * FROM ChargeCL WHERE Charge_no < 3000
  go
  -- And - you can narrow it down by trying the middle ground:
  -- What happens here: Table Scan or Bookmark lookup?
  SELECT * FROM ChargeHeap WHERE Charge_no < 3500
  go
  SELECT * FROM ChargeCL WHERE Charge_no < 3500
  go
  -- And again:
  SELECT * FROM ChargeHeap WHERE Charge_no < 3250
  go
  SELECT * FROM ChargeCL WHERE Charge_no < 3250
  go
  -- And again:
  SELECT * FROM ChargeHeap WHERE Charge_no < 3375
  go
  SELECT * FROM ChargeCL WHERE Charge_no < 3375
  go
  -- Don't worry, I won't make you go through it all :)
  -- For the Heap Table (in THIS case), the cutoff is: 0.21%
  SELECT * FROM ChargeHeap WHERE Charge_no < 3383
  go
  SELECT * FROM ChargeHeap WHERE Charge_no < 3384
  go
  -- For the Clustered Table (in THIS case), the cut-off is: 0.21%
  SELECT * FROM ChargeCL WHERE Charge_no < 3438
  SELECT * FROM ChargeCL WHERE Charge_no < 3439
  go

這個(gè)例子也就是 吳家震 在Teched 2007 上的那個(gè)演示例子。

發(fā)表評(píng)論 共有條評(píng)論
用戶名: 密碼:
驗(yàn)證碼: 匿名發(fā)表
主站蜘蛛池模板: 日本精品视频网站 | 欧美精品一区三区 | 久久国产欧美一区二区三区精品 | 日日天天 | www欧美日韩 | 欧美日韩一区二区三区在线观看 | a免费网站 | 国产精品看片 | 久草资源在线视频 | 成人精品一区二区三区 | 精品 99 | 国产精品久久久久久久久免费高清 | 亚洲自拍偷拍av | 成人精品一区二区 | 欧美精品一区二区三区蜜桃视频 | 亚洲色图第一区 | 中文字幕日韩欧美 | 免费特级黄毛片 | 日韩三级电影免费观看 | 中文久久 | 精品一区不卡 | 国产精品视频一区二区三区不卡 | 国产一区二区三区久久久久久 | 日韩免费在线 | 国产一区二区三区免费在线观看 | 成人免费视频视频在线观看 免费 | 日韩h| 一片毛片| 国产精品久久久久久久久 | 欧美精品网站 | 久久青| 亚洲免费视频在线观看 | 久久精品久久综合 | 国产h视频在线观看 | 老司机福利在线视频 | 手机看片1| 国产在线一区二区 | 春色av| 久久这里精品 | 国产视频在线播放 | 男人和女人上床网站 |